Janus effect of antifreeze proteins on ice nucleation.
نویسندگان
چکیده
The mechanism of ice nucleation at the molecular level remains largely unknown. Nature endows antifreeze proteins (AFPs) with the unique capability of controlling ice formation. However, the effect of AFPs on ice nucleation has been under debate. Here we report the observation of both depression and promotion effects of AFPs on ice nucleation via selectively binding the ice-binding face (IBF) and the non-ice-binding face (NIBF) of AFPs to solid substrates. Freezing temperature and delay time assays show that ice nucleation is depressed with the NIBF exposed to liquid water, whereas ice nucleation is facilitated with the IBF exposed to liquid water. The generality of this Janus effect is verified by investigating three representative AFPs. Molecular dynamics simulation analysis shows that the Janus effect can be established by the distinct structures of the hydration layer around IBF and NIBF. Our work greatly enhances the understanding of the mechanism of AFPs at the molecular level and brings insights to the fundamentals of heterogeneous ice nucleation.
منابع مشابه
Bacterial Ice Crystal Controlling Proteins
Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although ...
متن کاملCloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2.
The Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 secretes an antifreeze protein (AFP) that promotes survival at subzero temperatures. The AFP is unusual in that it also exhibits a low level of ice nucleation activity. A DNA fragment with an open reading frame encoding 473 amino acids was cloned by PCR and inverse PCR using primers designed from partial amino acid seque...
متن کاملRole of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds.
ABSTRACT We examined the ability of snow molds to grow at temperatures from -5 to 30 degrees C and to influence the growth of ice through assays for ice nucleation and antifreeze activities. Isolates of Coprinus psychromorbidus (low temperature basidiomycete variant), Microdochium nivale, Typhula phacorrhiza, T. ishikariensis, T. incarnata, and T. canadensis all grew at -5 degrees C, whereas Sc...
متن کاملBoreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides
Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch...
متن کاملIce nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring.
Remarkably little is known about the mechanism of action of ice nucleation proteins (INPs), although their ability to trigger ice nucleation could be used in a broad variety of applications. We present CD measurements of an insect lipoprotein ice nucleator (LPIN) which show that the lipoproteins consist of a high amount of β-structures (35%). Terahertz absorption spectroscopy is used to probe t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 51 شماره
صفحات -
تاریخ انتشار 2016